Here is a link to the patend of semiglutide synthesis
I have two friends that both are very experienced in peptides synthization. Both own their own equipment and have even produced hGH. I promise if you have the knnowledge, thisis not very hard to reproduce with the proper equipment.
A method for synthesizing a peptide having the sequence His-X-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Y-Glu-Phe-Ile-Ala-Trp-Leu-Val-Z-Gly-Arg-Gly is disclosed. The method includes enzymatically coupling: (a) a peptide C-terminal ester or thioester having a first...
patents.justia.com
Several peptides comprising the amino acid sequence H-His-X-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Y-Glu-Phe-Ile-Ala-Trp-Leu-Val-Z-Gly-Arg-Gly-OH are well known in the art as insulinotropic peptides. These peptides include GLP-1, Liraglutide and Semaglutide.
Human GLP-1 (Glucagon-like peptide-1) has the formula H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-Gly-OH.
Liraglutide is an Arg20-GLP-1 analogue substituted on the ε-amino group of the lysine in position 20 of the above sequence with a Glu-spaced palmitic acid. Thus, Liraglutide has the formula H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys(Pal-γ-Glu)-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly-OH (see also FIG. 1, all chiral amino acid residues are L-amino acid residues). In Lys(Pal-γ-Glu) the ε-amino-group of the Lys residue is linked with the γ-Glu carboxylic side-chain and the Glu is N-palmitoylated.
Semaglutide has the formula H-His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys(AEEA-AEEA-γ-Glu-17-carboxyheptadecanoyl)-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly-OH. Herein AEEA-AEEA-γ-Glu-17-carboxyheptadecanoyl is N-(17-carboxy-I-oxoheptadecyl)-L-γ-glutamyl-2-[2-(2-aminoethoxy)ethoxy]acetyl-2-[2-(2-aminoethoxy)ethoxy]acetyl (see also FIG. 2, all chiral amino acid residues are L-amino acid residues).
These peptides can, e.g., be used in the treatment of diabetes II. Further, e.g., Liraglutide can be used in the treatment of obesity, as injectable adjunct to a reduced-calorie diet and increased physical activity for chronic weight management in adult patients.
Here is another good paper on the current manufacturing of peptides
Peptide therapeutics represents a significant and growing area for manufacturing companies utilizing both chemical and recombinant methods. Approvals …
www.sciencedirect.com