Nelson Vergel
Founder, ExcelMale.com
Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?
Main Text
Normative aging is associated with a reduced ability to initiate and maintain sleep. Moreover, deficits in sleep physiology, including those of non-rapid eye movement (NREM) sleep and its associated neural oscillations, are especially prominent in later life. Though sleep disruption is a common signature of “normal aging”, the underlying neural mechanisms explaining age-related sleep impairment are only now being revealed.
This review focuses on physiological changes associated with normative human aging. First, we characterize associated alterations in sleep structure and oscillatory activity in later life. Second, we describe emerging neurobiological mechanisms that may account for these sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment. We conclude with the exploration of a still-unresolved question: are older adults unable to generate the sleep that they need or do they simply need sleep less.
http://www.cell.com/neuron/fulltext/S0896-6273(17)30088-0
Main Text
Normative aging is associated with a reduced ability to initiate and maintain sleep. Moreover, deficits in sleep physiology, including those of non-rapid eye movement (NREM) sleep and its associated neural oscillations, are especially prominent in later life. Though sleep disruption is a common signature of “normal aging”, the underlying neural mechanisms explaining age-related sleep impairment are only now being revealed.
This review focuses on physiological changes associated with normative human aging. First, we characterize associated alterations in sleep structure and oscillatory activity in later life. Second, we describe emerging neurobiological mechanisms that may account for these sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment. We conclude with the exploration of a still-unresolved question: are older adults unable to generate the sleep that they need or do they simply need sleep less.
http://www.cell.com/neuron/fulltext/S0896-6273(17)30088-0
Last edited: