Thanks Will,
Yes, with my cancer and treatment, serial CMPs have shown decreasing trend in GFR, some under 60. This makes me very unconfident. I am not seeing this as safe for me.
As always, risk/benefits exist. There's data to suggest creatine made cancar therapy more effective for example:
brinkzone.com
This is from a recent review also:
Does creatine cause kidney damage/renal dysfunction?
Questions and concerns involving creatine supplementation and kidney damage/renal dysfunction are common. In terms of pervasive misinformation in the sport nutrition arena, the notion that creatine supplementation leads to kidney damage/renal dysfunction is perhaps second only to the myth that protein supplementation and high habitual protein intake causes kidney damage. Today, after > 20 years of research which demonstrates no adverse effects from recommended dosages of creatine supplements on kidney health, unfortunately, this concern persists. While the origin is unknown, the connection between creatine supplementation and kidney damage/renal dysfunction could be traced back to two things: a poor understanding of creatine and creatinine metabolism and a case study published in 1998.
In skeletal muscle, both creatine and PCr are degraded non-enzymatically to creatinine, which is exported to the blood and excreted in the urine []. Healthy kidneys filter creatinine, which would otherwise increase in the blood. Therefore, blood creatinine levels can be used as a proxy marker of kidney function. However, the amount of creatinine in the blood is related to muscle mass (i.e. males have higher blood creatinine than females) and both dietary creatine and creatinine intake []. Both blood and urinary creatinine may be increased by ingestion of creatine supplementation and creatine containing foods, such as meat. Creatine is normally not present in urine, but can reach very high levels (>10 g/day) during creatine supplementation []. There appears to be an unsubstantiated perspective that if the kidneys are “forced” to excrete higher than normal levels of creatine or creatinine, some sort of kidney “overload” will take place, causing kidney damage and/or renal dysfunction. In reality, transient increases in blood or urinary creatine or creatinine due to creatine supplementation are unlikely to reflect a decrease in kidney function. Additionally, one must exercise caution when using blood creatinine and estimated creatinine clearance/glomerular filtration rate in individuals who consume high meat intake or supplement with creatine. In a review of creatine supplementation studies, Persky and Rawson [] found no increase in serum creatinine in 12 studies, 8 studies showed an increase that remained within the normal range, and only 2 studies showed an increase above normal limits (although not different from the control group in one study).
In 1998, a case study of a young male with focal segmental glomerulosclerosis and relapsing nephrotic syndrome was reported []. The young male, who had kidney disease for 8 years and was treated with cyclosporine (i.e., immunosuppressant) for 5 years, had recently begun ingesting creatine supplementation (15 g/day for 7 days; followed by 2 g/day for 7 weeks). Based on increased blood levels of creatinine and subsequent estimate of calculated creatinine clearance, his kidney health was presumed to be deteriorating, although he was otherwise in good health. The patient was encouraged to discontinue creatine supplementation. At this time, it was already known that blood and urine creatinine levels can increase following ingestion of creatine containing food products, including creatine supplements []. This was ignored by the authors of this case study, as was the inclusion of two investigations which demonstrated that creatine supplementation did not negatively impact renal function [, ]. The dosage of creatine during the maintenance phase, which was also ignored, was only slightly higher than the daily creatine intake of a typical omnivore’s dietary intake, or in terms of food, a large hamburger or steak per day (meat contains about 0.7 g of creatine / 6 oz. serving; see []). In response to this case study, two separate teams of experts in creatine metabolism wrote letters to the editor of Lancet [, ]. However, the notion that creatine supplementation leads to kidney damage and/or renal dysfunction gained traction and momentum.
Since this case study was reported in 1998, experimental and controlled research trials investigating the effects of creatine supplementation on kidney/renal function has substantially increased [, –]. Overall, in healthy individuals, there appears to be no adverse effects from consuming recommended doses of creatine supplements on kidney/renal function [, –]. Interestingly, Gualano et al. [] reviewed a small number of case studies which reported renal dysfunction in individuals who were supplementing with creatine. Similar to the case report by Pritchard and Kalra [], these additional case reports were confounded by medications, pre-existing kidney disease, concomitant supplement ingestion, inappropriate creatine dosages (e.g., 100 X recommended dose), and anabolic androgenic steroid use.
It is prudent to be cautious when ingesting any dietary supplement or medication. Survey data indicates that creatine supplementation usage ranges between 8-74% in athletes and other exercising individuals (reviewed in Rawson et al. []). Even with a low estimate of 8% of exercising individuals using creatine supplements, this indicates thousands of exposures across several decades. If the link between creatine supplementation and kidney health was valid, there would be an expected increase in kidney damage / renal dysfunction in low risk (i.e. young, physically fit, healthy) individuals since 1992 after Harris et al. published their seminal work []. After nearly 30 years of post-marketing surveillance, thousands of exposures, and multiple clinical trials, no such evidence exists.
In summary, experimental and controlled research indicates that creatine supplementation, when ingested at recommended dosages, does not result in kidney damage and/or renal dysfunction in healthy individuals.