madman
Super Moderator
Iron deficiency is one of the leading contributors to the global burden of disease, and particularly affects children, premenopausal women, and people in low-income and middle-income countries. Anaemia is one of many consequences of iron deficiency, and clinical and functional impairments can occur in the absence of anaemia. Iron deprivation from erythroblasts and other tissues occurs when total body stores of iron are low or when inflammation causes withholding of iron from the plasma, particularly through the action of hepcidin, the main regulator of systemic iron homoeostasis. Oral iron therapy is the first line of treatment in most cases. Hepcidin upregulation by oral iron supplementation limits the absorption efficiency of high-dose oral iron supplementation, and of oral iron during inflammation. Modern parenteral iron formulations have substantially altered iron treatment and enable rapid, safe total-dose iron replacement. An underlying cause should be sought in all patients presenting with iron deficiency: screening for coeliac disease should be considered routine, and endoscopic investigation to exclude bleeding gastrointestinal lesions is warranted in men and postmenopausal women presenting with iron deficiency anaemia. Iron supplementation programmes in low-income countries comprise part of the solution to meeting WHO Global Nutrition Targets.
Introduction
Iron deficiency (ID) and iron deficiency anaemia (IDA) cause an immense disease burden worldwide. Globally, there were over 1·2 billion cases of IDA in 2016.1 IDA is among the five greatest causes of years lived with disability globally, the leading cause of years lived with disability in low-income and middle-income countries (LMICs), and is the leading cause of years lived with disability among women across 35 countries.1 Controlling anaemia is a global health priority: WHO is aiming for a 50% reduction in anaemia prevalence in women by 2025.2
When iron intake is inadequate to meet requirements or to compensate for physiological or pathological losses, body iron stores become depleted. Absolute ID occurs when iron stores are insufficient to meet the needs of the individual, and is particularly common in young children (younger than 5 years) and premenopausal (especially pregnant) women. In patients with inflammation, withholding of iron from the plasma promotes iron-deficient erythropoiesis and anaemia despite adequate body iron stores (functional iron deficiency). This process is common in patients with complex medical or surgical disorders, in people living in areas where infection prevalence is high, and in patients receiving erythropoiesis-stimulating agents.3
Iron is crucial for numerous physiological and cellular processes and ID causes diverse health consequences. Management of ID is an important and complex challenge faced by practitioners of medicine, nutrition, and public health worldwide. In this Seminar, we update the physiology, diagnosis, and clinical management of ID and identify future translational and clinical research directions.
Clinical presentation
ID can cause symptoms both in the presence and absence of anaemia or can be asymptomatic. Common symptoms and signs include fatigue and lethargy reduced concentration, dizziness, tinnitus, pallor, and headache. In susceptible individuals, ID promotes restless leg syndrome.4 Other presentations include alopecia, dry hair or skin, koilonychia, and atrophic glossitis. Symptoms in infants (aged younger than 12 months) with ID can include poor feeding and irritability.5 Patients might also present with pica: the compulsive ingestion of non-nutritive foods, such as soil or clay, ice, or raw ingredients (eg, uncooked rice).6 ID and anaemia can also exacerbate symptoms and worsen the prognosis of medical conditions, including heart failure7 and ischaemic heart disease.8 Severe IDA can cause haemodynamic instability. Preoperative anaemia increases the risk of blood transfusion and is correlated with postoperative morbidity and mortality.9 Even when asymptomatic, ID can promote suboptimal functional outcomes, including impaired physical exercise performance, child neurocognitive development, and pregnancy outcomes.10
*Epidemiology of ID
*Molecular pathology of ID
*Clinical pathophysiology of absolute ID
-Blood loss
-Inadequate iron intake and absorption
-Increased iron needs during life
*Diagnosis of ID
*Further investigation of ID
*Treatment of ID
*Oral iron supplementation
*Parenteral iron therapy
*Clinical benefits of iron therapy
*Iron interventions in patients without complex medical conditions
*Parenteral iron in patients with complex conditions
-Congestive cardiac failure
-Inflammatory bowel disease
-Perioperative optimisation
-Chronic kidney disease
*Preventing ID in LMICs
Conclusions
Clinicians regularly encounter ID and IDA. Understanding the pathophysiology of absolute and functional ID guides diagnosis, appropriate use of established and emerging treatments, and rational deployment of further investigations. Further research into the biology, epidemiology, diagnosis and treatment of ID (panel 2) will continue to transform approaches to this common condition.
Introduction
Iron deficiency (ID) and iron deficiency anaemia (IDA) cause an immense disease burden worldwide. Globally, there were over 1·2 billion cases of IDA in 2016.1 IDA is among the five greatest causes of years lived with disability globally, the leading cause of years lived with disability in low-income and middle-income countries (LMICs), and is the leading cause of years lived with disability among women across 35 countries.1 Controlling anaemia is a global health priority: WHO is aiming for a 50% reduction in anaemia prevalence in women by 2025.2
When iron intake is inadequate to meet requirements or to compensate for physiological or pathological losses, body iron stores become depleted. Absolute ID occurs when iron stores are insufficient to meet the needs of the individual, and is particularly common in young children (younger than 5 years) and premenopausal (especially pregnant) women. In patients with inflammation, withholding of iron from the plasma promotes iron-deficient erythropoiesis and anaemia despite adequate body iron stores (functional iron deficiency). This process is common in patients with complex medical or surgical disorders, in people living in areas where infection prevalence is high, and in patients receiving erythropoiesis-stimulating agents.3
Iron is crucial for numerous physiological and cellular processes and ID causes diverse health consequences. Management of ID is an important and complex challenge faced by practitioners of medicine, nutrition, and public health worldwide. In this Seminar, we update the physiology, diagnosis, and clinical management of ID and identify future translational and clinical research directions.
Clinical presentation
ID can cause symptoms both in the presence and absence of anaemia or can be asymptomatic. Common symptoms and signs include fatigue and lethargy reduced concentration, dizziness, tinnitus, pallor, and headache. In susceptible individuals, ID promotes restless leg syndrome.4 Other presentations include alopecia, dry hair or skin, koilonychia, and atrophic glossitis. Symptoms in infants (aged younger than 12 months) with ID can include poor feeding and irritability.5 Patients might also present with pica: the compulsive ingestion of non-nutritive foods, such as soil or clay, ice, or raw ingredients (eg, uncooked rice).6 ID and anaemia can also exacerbate symptoms and worsen the prognosis of medical conditions, including heart failure7 and ischaemic heart disease.8 Severe IDA can cause haemodynamic instability. Preoperative anaemia increases the risk of blood transfusion and is correlated with postoperative morbidity and mortality.9 Even when asymptomatic, ID can promote suboptimal functional outcomes, including impaired physical exercise performance, child neurocognitive development, and pregnancy outcomes.10
*Epidemiology of ID
*Molecular pathology of ID
*Clinical pathophysiology of absolute ID
-Blood loss
-Inadequate iron intake and absorption
-Increased iron needs during life
*Diagnosis of ID
*Further investigation of ID
*Treatment of ID
*Oral iron supplementation
*Parenteral iron therapy
*Clinical benefits of iron therapy
*Iron interventions in patients without complex medical conditions
*Parenteral iron in patients with complex conditions
-Congestive cardiac failure
-Inflammatory bowel disease
-Perioperative optimisation
-Chronic kidney disease
*Preventing ID in LMICs
Conclusions
Clinicians regularly encounter ID and IDA. Understanding the pathophysiology of absolute and functional ID guides diagnosis, appropriate use of established and emerging treatments, and rational deployment of further investigations. Further research into the biology, epidemiology, diagnosis and treatment of ID (panel 2) will continue to transform approaches to this common condition.