Nelson Vergel
Founder, ExcelMale.com
Current research suggests that Adderall (mixed amphetamine salts) at therapeutic doses is highly unlikely to directly kill dopaminergic neurons. However, chronic amphetamine use does deplete endogenous antioxidants, results in long-lasting downregulation of the enzyme tyrosine hydroxylase involved in the endogenous biosynthesis of dopamine from tyrosine, and reduces both nerve growth factor (NGF) and brain-derived neurotropic factor (BDNF) in rat brain2. These cellular events likely underly Adderall neurotoxicity.
Benefits of Adderall in Patients with ADHD
The benefits of Adderall in certain patients cannot be dismissed despite these safety concerns.
An MRI-based neuroimaging study provided tentative evidence that therapeutic doses of psychostimulants in patients with ADHD rescues alterations in brain structure compared with unmedicated subjects3, which may underlie the clinical benefits of psychostimulants in this patient population.
It remains possible that amphetamine exerts neurotrophic effects in individuals with ADHD by facilitating normal brain development and enhancing reward saliency while also at the same time adversely affecting the dopaminergic system. Elevations in intracellular dopamine concentrations outside of vesicular storage likely promotes the formation of 6-hydroxydopamine (6-OHDA, oxidopamine). 6-OHDA or oxidopamine is a potent neurotoxin which selectively destroys dopaminergic neurons and is employed in animal models to emulate methamphetamine abuse and Parkinson’s disease.
These biochemical events likely underlie Adderall neurotoxicity.
Basic strategies to mitigate Adderall neurotoxicity
Benefits of Adderall in Patients with ADHD
The benefits of Adderall in certain patients cannot be dismissed despite these safety concerns.
An MRI-based neuroimaging study provided tentative evidence that therapeutic doses of psychostimulants in patients with ADHD rescues alterations in brain structure compared with unmedicated subjects3, which may underlie the clinical benefits of psychostimulants in this patient population.
It remains possible that amphetamine exerts neurotrophic effects in individuals with ADHD by facilitating normal brain development and enhancing reward saliency while also at the same time adversely affecting the dopaminergic system. Elevations in intracellular dopamine concentrations outside of vesicular storage likely promotes the formation of 6-hydroxydopamine (6-OHDA, oxidopamine). 6-OHDA or oxidopamine is a potent neurotoxin which selectively destroys dopaminergic neurons and is employed in animal models to emulate methamphetamine abuse and Parkinson’s disease.
These biochemical events likely underlie Adderall neurotoxicity.
Basic strategies to mitigate Adderall neurotoxicity