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Abstract

The cyclic guanosine monophosphate (cGMP) signaling
system is one of the most prominent regulators of many
physiopathological processes in humans and rodents. It has
been strongly established as an accomplished cellular signal
involved in the regulation of energy homeostasis and cell
metabolism, and pharmacological enhancement of cGMP has
shown beneficial effects in metabolic disorders models. cGMP
intracellular levels are finely regulated by phosphodiesterases
(PDEs). The main enzyme responsible for the degradation of
cGMP is PDE5. Preclinical and clinical studies have shown
that PDE5 inhibitors (PDE5i) have beneficial effects on
improving insulin resistance and glucose metabolism repre-
senting a promising therapeutic strategy for the treatment of
metabolic disorders. This review aims to describe the molec-
ular basis underlying the use of PDE5i to prompt cell meta-
bolism and summarize current clinical trials assessing the
effects of PDE5i on glucose metabolism.
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Introduction
The increasing prevalence of obesity, type 2 diabetes
(T2DM) and other endocrine-metabolic disorders un-
derscores the need to develop new therapeutic strate-

gies [1]. Insulin resistance (IR) has been recognized as
the step preceding their development, with diabetes
ensuing when insulin secretory capacity fails to
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compensate the increased insulin body requirements

[2]. Prevention strategies include weight loss and ex-
ercise activity but require patients’ compliance and
strict adherence; lifestyle interventions are difficult for
patients to maintain and the weight loss achieved tends
to be regained over time [3]. Pharmacological treat-
ments include metformin and thiazolidinediones, and
both drugs demonstrated efficacy in reducing the pro-
gression toward diabetes [4,5], but their use is not free
of adverse effects [6], although metformin exhibits a
safer profile [4]. In this context, one of the promising
targets is the second messenger cGMP, whose levels are

finely regulated by Phosphodiesterases (PDEs) and, in
particular, PDE5. Many authors have investigated the
efficacy of PDE5 inhibition in the regulation of glucose
and lipid metabolism. PDE5 inhibitors (PDE5i) activity
has long been used as an effective treatment for erectile
dysfunction and pulmonary hypertension [7,8], and
much evidence suggest the efficacy and safety of PDE5i
in other pathological conditions, such as cardiovascular
diseases [9e11] and endocrine-metabolic disorders
[12e14]. Based on recent in vitro and in vivo findings,
this review summarizes (i) the molecular mechanisms

underlying the effects of PDE5i on glucose and lipid
homeostasis (Figure 1) (ii) the data derived from
clinical trials assessing possible beneficial effects on
humans (Table 1).

Role of cGMP-PKG pathway in the control of
energy homeostasis
cGMP intracellular levels are finely controlled by the
generating enzymes guanylyl cyclases (GCs) and the
degrading enzymes, PDEs. Eleven PDE families are
present in mammalian cells that, after alternative
splicing, give rise to more than 100 PDE isoforms in
rodents and humans [15,16]. PDE5, PDE6, and PDE9

are able to specifically hydrolyze cGMP, PDE4, PDE7,
and PDE8 display high specificity for cAMP, while
PDE1, PDE2, PDE3, PDE10, and PDE11 have dual
specificity, modulating levels of both cAMP and cGMP
[17]. cGMP regulates mitochondrial biogenesis in a
broad spectrum of cells representing the main deter-
minant for cellular metabolism [18]. The major down-
stream target of cGMP in adipocytes is cGMP-
www.sciencedirect.com
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Figure 1

Metabolic actions of PDE5i in the control of glucose and lipid metabolism.
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dependent protein kinase (PKG), whose activity is
indispensable for the proper differentiation of adipo-
cytes [19e21]. Loss of PKG impairs the thermogenic

capacity of brown adipose tissue (BAT), with reduced
uncoupling protein 1 (UCP1) expression and mito-
chondrial content in PKGI knockout mice [19]. More-
over, brown preadipocytes isolated from PKGI knockout
show defects in differentiation with reduced expression
of thermogenic markers peroxisome proliferator-
activated receptor gamma (PPARy), UCP1, and peroxi-
some proliferator-activated receptor gamma coactivator
1-alpha (PGC-1a) [19]. On the contrary, mice over-
expressing PKG are resistant to diet-induced obesity
(DIO) displaying increased insulin sensitivity, enhanced
energy expenditure, increased BAT mitochondrial con-

tent, and increased expression of the thermogenic
markers UCP1 and PGC-1a [22]. Importantly, acti-
vating cGMP signaling is beneficial for the adipogenic
and thermogenic programs also in cultured human adi-
pocytes [19,20,22e24]. Given that premises, targeting
the cGMP-PKG axis could represent a valuable tool to
control cell metabolism. cGMP-hydrolyzing PDEi effi-
cacy is based on the ability to block the cGMP break-
down, produced by the nitric oxide (NO)-dependent
activation of GC [17]. Many cGMP-hydrolyzing PDEs
have been found to be expressed in adipose tissue (AT)

and adipocytes in rodents and humans [25,26]. A study
performed on mouse primary brown adipocytes revealed
the presence of Pde1a, Pde2a, and Pde3b mRNA [27],
while PDE3, PDE9 and PDE10 proteins were detected
www.sciencedirect.com
in human AT and adipocytes [28]. PDE3B represents
the main regulator of lipid metabolism, adiposity, and
energy status in adipocytes [29]. Based on this consid-

eration, PDE3B deficiency resulted in cAMP/protein
kinase A and 50 adenosine monophosphate-activated
protein kinase-induced increases in respiratory uncou-
pling and fatty acid oxidation (FAO) [30]. Moreover,
Pde3b knockout mice display reduced fat mass and
adipocytes size, increased insulin secretion, increased
mitochondrial biogenesis and oxygen consumption [30e
33]. Other cGMP-hydrolyzing PDEs are able to modu-
late at different levels of cell metabolism, and their
absence/inhibition has beneficial effects on glucose and
lipid metabolism [28,34]. Inhibition of PDE10A has
been shown to increase glucose uptake and thermo-

genesis in BAT of different experimental models of
obesity [35]. Moreover, Pde10 knockout mice are
resistant to DIO and related metabolic disturbances.
In vivo administration of PDE1 inhibitors reduced
weight gain in mice fed with normal chow and high-fat
diet (HFD) [36]. Table 2 summarizes the metabolic
phenotype of mouse models resulting from genetic
alteration of cGMP/PKG/PDEs signaling. However, the
main enzyme responsible for the degradation of cGMP is
PDE5 [17]. PDE5 mRNA expression was first detected
in human subcutaneous adipocytes [37]. Interestingly,

the highest levels of PDE5 protein were detected in
preadipocytes, and these levels decreased during adi-
pocytes maturation [21]. Several experimental findings
suggest that selective PDE5 blockade increases
Current Opinion in Pharmacology 2021, 60:298–305
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Table 1

Summary of RCTs studying PDE5i effects on metabolism.

Reference Study design Population Outcomes Drug Results

Hill et al. Diabetes
care, 2009 [26]

Randomized,
crossover, double-
blind.

18 subjects with
metabolic
syndrome

IS and b-cell function
during an intravenous
glucose tolerance test

Tadalafil 10 mg once
daily for 3 weeks

Improved IS and b-
cell function in
women but not
men

Jansson et al.
Diabetologia, 2010
[28]

Placebo-controlled,
crossover

7 post-menopausal
women with T2DM
versus non-
diabetic matched
controls

Skeletal muscle capillary
recruitment (PSglu)
and glucose uptake
measured by
microdialysis

Single dose Tadalafil
20 mg

Increase in PSglu and
muscle glucose
uptake in T2DM
but not control

Murdolo et al. JCEM,
2013 [25]

Open label, active-
control

8 women with post-
menopausal
–T2DM versus
non-diabetic
matched controls

Local microcirculation
and regional
metabolism in skeletal
muscle and adipose
tissue through
microdialysis

Single dose Tadalafil
10 mg

Increased
microvascular
recruitment and
glucose
metabolism in
skeletal muscle
and adipose tissue
both in T2DM and
controls

Ho et al. J Am Heart
Assoc, 2014 [31]

Randomized,
double-blinded,
placebo-controlled
trial

53 adults with non-
diabetic
obesity–high
fasting insulin
levels

Difference in IR, as
measured by HOMA-
IR and ODI during
OGTT.

Tadalafil 20 mg daily
for 3 months

Improved HOMAi
and ODI in
severely obese
patients

Ramirez et al. JCEM
2015 [21]

Randomized,
double-blinded,
placebo-controlled
trial

21 IS and GSIS during
hyperglycemic clamps

Sildenafil 75 mg per
day (25 mg thrice a
day) for 3 months

Enhanced IS;
No effects on
GSIS

Mandosi et al. Expert
opin. Ther targets,
2015 [32]

Open label, active-
control

28 men with T2DM Baseline and
postprandial
glycemia, insulin,
HbA1c, HOMAi, lipids

Sildenafil 100 mg per
day
(25 + 25 + 50 mg)
for 3 months

Reduced
postprandial
glycemia, HbA1c,
LDL, cholesterol
and increased
HDL

Fiore et al. JCEM,
2015 [8]

Randomized,
double-blinded,
placebo-controlled
trial

59 men with type 2
diabetes mellitus

Anthropometric and
metabolic parameters,
VAT, EAT
quantification through
CMR imaging

Sildenafil 100 mg per
day
(25 + 25 + 50 mg)
for 3 months

Reduced waist
circumference and
EAT

Sjogren et al. Diabet
Med, 2016 [29]

Randomized,
double-blinded,
placebo-controlled
trial

20 men and women
with well-
controlled T2DM

Skeletal muscle capillary
recruitment (PSglu)
and glucose uptake
measured by
microdialysis

Single dose Tadalafil
20 mg before a
mixed meal

Increase in PSglu and
muscle glucose
uptake

González-Ortiz, Acta
clinica Belgica,
2017 [30]

Randomized,
double-blinded,
placebo-controlled
trial

18 male patients with
obesity

Total and first phase of
insulin secretion,
insulin sensitivity

Tadalafil 5 mg for 28
days

No differences.

IR: insulin resistance; HOMA-IR: homeostatic model assessment for insulin resistance; ODI: oral disposition index; HOMAi: homeostatic model assessment
index; OGTT: oral glucose tolerance test; VAT: visceral adipose tissue; HbA1c: glycated hemoglobin; CMR: cardiac magnetic resonance; LDL: low-density
lipoprotein; HDL: high-density lipoprotein; EAT: epicardial adipose tissue; T2DM: type 2 diabetes mellitus; GSIS: glucose-stimulated insulin secretion; IS:
insulin sensitivity; PSglu: permeability surface area for glucose.
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intracellular cGMP levels and concomitantly improves
insulin resistance and peripheral glucose disposal [21];
however, the lack of Pde5 knockout mouse models
hampers a deep understanding of PDE5 contribution in
the regulation of glucose and lipid homeostasis.
Current Opinion in Pharmacology 2021, 60:298–305
Effect of PDE5i on adipogenesis and
thermogenesis
The altered function of AT has a great impact on whole-
body metabolism and represents a key driver for the
development of metabolic disorders. Browning, which
www.sciencedirect.com
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Table 2

Metabolic phenotype of mouse models resulting from genetic alteration of cGMP/PKG/PDEs signaling.

Genetic alteration Phenotype/Biological effects References

PKGI−/- Reduced BAT mass
Impairment of browning
Reduced mitochondrial biogenesis
Reduced adiponectin levels

Haas B. et al. 2009 [19]; Mitschke, M.M. et al., 2013 [20];

cGK-Tg Reduced body weight
Increased mitochondrial content
Increased fat oxidation
Improved insulin sensitivity
Decreased glucose levels
Increased oxygen consumption

Miyashita K. et al. 2009 [22].

Pde3b−/- Increased basal glucose production
Defects in TG storage
Increased FA biosynthesis
Decreased adipocytes size
Enhanced catecholamine-stimulated lipolysis
Enhanced insulin-stimulated lipogenesis
Increased browning

Berger K. et al. 2009 [31];
Choi Y.H. et al. 2006 [32];
Guirguis E. et al. 2013 [33].

Pde4b−/- Reduced fat pad weights
Reduced adipocyte size
Decreased serum leptin levels
Reduced HFD-induced inflammation

Zhang R.et al. 2009 [34].

Pde9a−/- Reduced body weight
Reduced fat mass

Omar B.et al. 2011 [28].

Pde10a−/- DIO resistance
Improved insulin sensitivity

Nawrocki A.R. et al. 2014 [35].

BAT: brown adipose tissue; TG: triglycerides; FA: fatty acids; HFD: high-fat diet; DIO: diet-induced obesity.
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consists of the induction of thermogenically active adi-
pocytes in white fat depots [38], leads to protection
against metabolic derangements in a mouse model of

metabolic syndrome [39]. It has been established that
browning improves whole-body homeostasis and insu-
lin sensitivity in humans and mouse models [40,41].
Therefore, increasing BAT activity emerged as an
attractive target for endocrine-related disorders. Many
pieces of evidence suggest an involvement of the cGMP-
PKG pathway in adipogenesis in the 3T3-L1 cell line
[20] and the use of sildenafil in these cells has been
shown to promote adipogenesis through the activation
of the cGMP-PKG pathway [20]. In particular, PDE5
blockade during 3T3-L1 preadipocyte differentiation

increased intracellular lipid droplets, as well as the
expression of adipocyte-specific genes PPARg, Fas, and
Adiponectin [21]. Sildenafil treatment enhances the
expression of adipogenic markers, such as PPARg and
Fabp4 also in murine primary white adipocytes [20,42].
Furthermore, in vitro treatment of murine primary white
adipocytes with sildenafil induces browning and in-
creases expression of the thermogenic markers UCP1
and PGC-1a [20], while acute exposure of primary
human white adipocytes to PDE5i stimulates aromatase
expression positively affecting metabolism [43].
www.sciencedirect.com
Effect of PDE5i on lipolysis
Lipolysis is responsible for the hydrolysis of triacyl-
glycerol stored in AT and is catalyzed by hormone-
sensitive lipase (HSL) and adipose tissue triglyceride
lipase, yielding free fatty acid (FFA) and glycerol [44].
Activation of HSL is dependent on increased levels
of cAMP and subsequent activation of protein kinase
A [45]. However, an intrinsic lipolytic pathway is

coupled to PKG signaling because PKG is able to
phosphorylate HSL, stimulate mitochondrial biogen-
esis and improve insulin signaling to counteract DIO
[46]. PDEs inhibition has been known to enhance
adipocyte lipolysis, and in particular, PDE3i can induce
high levels of lipolysis in human adipocytes in vitro
[26]. Moreover, the use of a PDE1i increases HSL
phosphorylation suggesting the induction of lipolytic
pathway [36], while PDE4 can limit the rate of basal
lipolysis in rat adipocytes [47]. Given the ability of
PDE3 and PDE4 to influence lipolysis the inhibition

of both PDEs is required for efficient stimulation of
lipolysis in murine and rat adipocytes [26]. PDE5i in
human subcutaneous adipocytes [37] and visceral ad-
ipocytes [21] does not impair lipolysis rate probably for
the slight magnitude of the increase in cGMP levels in
these cells.
Current Opinion in Pharmacology 2021, 60:298–305
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Effect of PDE5i on energy expenditure and
fat oxidation
Following lipolysis, the free fatty acid is released into the
blood and transported to the working muscle for oxida-
tion [48]. Several compounds are known to influence
energy expenditure and fat oxidation [49]. PDE5i-
induced cGMP enhancement results in increased
expression and activity of PPARa, a master controller of
mitochondrial FAO [50]. Subtherapeutic doses of
PDE5i combined with Leucine result in activation of
FAO, marked improvement in insulin sensitivity and
reversal of hepatic steatosis and inflammation in DIO
mice [51]. Moreover, PDE5i treatment of 3T3-L1 cells

significantly increases basal oxygen consumption rate,
maximal OxPhos capacity together with increased FAO
rate [52]. In men, testosterone plays a pivotal role in
restraining FA storage in femoral adipose tissue via
suppression of lipoprotein lipase and acyl-coenzyme A
synthetase activities, and testosterone deficiency has
been demonstrated to alter FA storage [53].
Effect of PDE5i on insulin sensitivity and
secretion
The involvement of PDE5 in insulin signaling has been
claimed from the observation that chronic treatment
with PDE5i in a mouse model of diet-induced IR in-
creases not only cGMP levels but also insulin sensitivity
and muscle glucose uptake counteracting the detri-
mental effects of HFD on endothelial function [54].

Moreover, a study performed on rabbits demonstrated
that long- and short-term treatment with tadalafil was
able to reduce triglycerides accumulation in visceral
adipose tissue in an experimental model of diet-induced
metabolic syndrome. Tadalafil is able to counteract
HFD-related alterations by restoring insulin sensitivity,
increasing expression of thermogenic markers, reducing
ROS, and prompting preadipocytes differentiation
toward a metabolically healthy phenotype [55]. More-
over, short-term treatment with PDE5i udenafil has
been demonstrated to reduce body weight, visceral fat

mass ad appetite in high-fat-fed mice mostly because of
a reduction of leptin plasma levels [56]. cGMP pathway
appears to regulate glucose metabolism through the
upstream activation of NO also in pancreatic b-cells
[57]. Preclinical and clinical studies have shown that
PDE5i have beneficial effects not only on improving b-
cell function but also on increasing insulin sensitivity of
other peripheral tissues (such as skeletal muscle cells
and adipocytes) thus improving IR [58e61]. Physio-
logical concentrations of NO enhance hepatic insulin
response through the canonical sGC/PKG pathway [62]

while endothelial NO/cGMP/VASP signaling attenuates
hepatic IR induced by high-fat feeding [63]. In human
skeletal muscle cells, tadalafil has been demonstrated to
regulate lipid homeostasis via IRS-1 [59], and acute
administration of PDE5 inhibitor zaprinast was able to
enhance insulin-mediated microvascular perfusion [64].
Current Opinion in Pharmacology 2021, 60:298–305
Clinical trials
The first proof-of-concept study testing the hypothesis

that PDE5i could improve glucose homeostasis was a
randomized, crossover, double-blind trial performed in
individuals with metabolic syndrome [65]. 18 patients
were treated for 3 weeks with 10 mg tadalafil once daily.
Insulin sensitivity and b-cell function were measured
during an intravenous glucose tolerance test. The re-
sults showed that daily treatment with tadalafil
improved b-cell function, insulin sensitivity and secre-
tion in women but not men. Interestingly, the PDE5i-
mediated improvement in b-cell function was
measured in subjects exhibiting baseline fasting hyper-

glycemia as opposite to euglycemic ones suggesting that
PDE5i are more effective during metabolic impairment.
The study did not address possible underlined mecha-
nisms and the sex difference in response to PDE5i was
explained by the higher blood glucose in enrolled
women, or rather in the different sensitivity to cGMP
degradation that can be linked to genetic variants in
female subjects [66].

Sex differences in response to PDE5i treatment are
recognized [67]. A possible explanation for the sex dif-
ference in the response to PDE5i treatment could rely
on the gonadal status of the enrolled subjects. It is now
recognized that intra-myocyte effects of sildenafil are
estrogen-dependent in females, [68] and on the other
hand, testosterone is crucial for PDE5 expression, NO
generation, and response to PDE5i in men [69]. Un-
fortunately, neither the age nor the gonadal status was
described by the authors.

Later, a possible explanation for PDE5i peripheral effect
on insulin sensitivity was proposed [70e73]. By using
muscle microdialysis, Jansson et al. [70] performed a
placebo-controlled, crossover trial to assess the effects of
a single dose of 20 mg of tadalafil or matching placebo on
muscle capillary recruitment and forearm glucose uptake
in 7 post-menopausal women with T2DM on the fasting
state. They showed an acute positive effect on capillary
recruitment and glucose uptake [70]. The same results
were then confirmed in an randomized controlled trial
(RCT) enrolling a mixed population of 20 women and
men with well-controlled T2DM treated with a single

dose of 20 mg of tadalafil before a mixed meal test.
However, in this study, no differences were found for
circulating concentrations of baseline or postprandial
glucose, insulin, triglycerides or free fatty acids between
groups [71]. The authors speculated that the expansion
of the endothelial surface area, through the recruitment
of additional microvasculature, could play an important
role in modulating themuscle sensitivity to both insulin-
and contraction-dependent glucose disposal.

Conflicting results came from a subsequent study

performed by the same group on 8 post-menopausal
www.sciencedirect.com
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women with T2DM compared to non-diabetic matched
controls treated with a single dose of 10 mg of tadalafil
[74]. The aim of the study was to explore the acute
effects of tadalafil on local microcirculation and regional
metabolism in skeletal muscle and AT through intra-
muscular and subcutaneous microdialysis. The authors
demonstrated that acute tadalafil administration in-
creases muscle capillary recruitment, non-oxidative

glucose metabolism and glucose conversion to lactate
in skeletal muscle and AT irrespective of IR. However,
no differences in permeability surface area for glucose
(PSglu) and/or regional glucose uptake were found. The
authors discussed the conflicting results arguing with
the total dose (10 vs 20 mg) and duration (acute vs
chronic) of tadalafil administration, which was lower
than previous results.

A similar lack of metabolic effects was seen in a clinical
trial performed in 18 obese men on which 5 mg of

tadalafil for 28 days had no effects on insulin sensitivity
or total/first phase of insulin secretion [75]. Whether the
lack of the effects could be due to the length of treat-
ment or the total daily dose of PDE5i must be confirmed
in dedicated trials.

Another human evidence of the beneficial effects of
PDE5i on ATcomes from a clinical trial on 59 men with
T2DM treated with 100 mg of sildenafil or a matching
placebo for 12 weeks [12]. Sildenafil treatment reduced
waist circumference and epicardial adipose tissue

without affecting BMI. The authors also demonstrated
the modulation of miR-22-3p and SIRT1 pathways
associated with the beneficial effects of PDE5i on
AT remodeling.

The same group also gave the only evidence of meta-
bolic improvement in terms of glucose metabolism in 28
men with T2DM treated with sildenafil 100 mg daily or
matching placebo for 3 months. In this cohort, sildenafil
reduced postprandial glycemia, HbA1c, low-density li-
poprotein cholesterol and increased high-density lipo-
protein cholesterol.

Later, Ho et al. [57] performed a clinical trial to examine
the effects of 3 months of high dose tadalafil treatment
on IR and insulin secretion in 53 adults with non-dia-
betic obesity with elevated fasting insulin levels [57].
Participants were randomized to receive either oral
tadalafil 20 mg daily or matching placebo for 3 months.
Oral glucose tolerance tests were performed to examine
the effect of tadalafil on IR. The results showed that in
individuals with severe obesity, tadalafil improved
HOMAi and oral disposition index (a measure of b-cell
compensation for IR) without sex by treat-
ment interactions.

However, the study used estimates of b-cell function
and IR derived from glucose tolerance test rather than
www.sciencedirect.com
the gold standard, a more precise and physiologic esti-
mate of insulin sensitivity, the hyperinsulinemic-
euglycemic clamp.

Convincing results came from a clinical trial measuring
glucose-stimulated insulin secretion and estimating in-
sulin sensitivity through hyperglycemic clamps. The
authors tested the hypothesis that 3-months treatment

with 75 mg of sildenafil increases insulin secretion and
improves tissue insulin sensitivity in overweight pa-
tients with prediabetes [58]. The results confirmed
sildenafil improved insulin sensitivity index, but no ef-
fects were found on acute or late phase glucose-
stimulated insulin secretion. A trend toward higher
disposal index was found in the sildenafil arm.

Finally, in a very recent trial on 43 non-obese men with
erectile dysfunction, 2-months treatment with 5 mg of
tadalafil improved body composition, by increased

abdominal lean mass, and improved endothelial function
[76]. The effects were directly related with serum in-
sulin and inversely related to estrogen levels. Interest-
ingly, all the beneficial effects of tadalafil were lost after
2 months withdrawal.

Further large, well-designed, prospective trials are
needed to draw definitive conclusion regarding the
contribute of sex and/or different degree of metabolic
impairment (insulin resistance, obesity and diabetes
mellitus) on the beneficial effects of PDE5i treatment.
Conclusions
NO-cGMP-PKG signaling pathway plays a pivotal role in
the regulation of glucose and lipid metabolism.

Although molecular mechanisms are still not completely
understood, given the wide expression of PDE5 in
metabolic active tissues and the safety of PDE5i, these
data suggest that PDE5i may have favorable metabolic
effects by improving insulin sensitivity and glucose
metabolism before the development of clinical diabetes.
This opens a new therapeutic strategy in the prevention
of metabolic diseases.
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