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Abstract

The kidneys are vital organs that play an important role in removing waste materials from the blood, electrolyte balance,
blood pressure regulation, and red blood cell genesis. Kidney disease can be caused by various factors, including diabetes,
ischemia/reperfusion injury, and nephrotoxic agents. Inflammation and oxidative stress play a key role in the progression
and pathogenesis of kidney diseases. Acute kidney injury (AKI) and chronic kidney disease (CKD) are important health
problems worldwide, as they are associated with a long-term hospital stay, and increased morbidity and mortality in high-
risk patients. Current standard therapeutic options are not sufficient to delay or stop the loss of kidney function. Therefore,
it is necessary to develop new therapeutic options. Phosphodiesterase 5 inhibitors (PDES5Is) are a currently available class
of drugs that are used to treat erectile dysfunction and pulmonary hypertension in humans. However, recent evidence sug-
gests that PDESIs have beneficial renoprotective effects via a variety of mechanisms. In this review, the benefits of PDES5
inhibitors in clinical conditions associated with kidney disease, such as diabetic nephropathy, ischemia—reperfusion injury,

and acute and chronic kidney injury, are summarized.
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Introduction

The kidney is a vital organ that has many functions, includ-
ing electrolyte and volume regulation, elimination of nitrog-
enous wastes, elimination of exogenous molecules (e.g.,
many drugs), synthesis of various hormones (e.g., erythro-
poietin), and metabolism of low molecular weight proteins.
Renal failure develops in cases where the kidneys fail to
fulfill their excretory function or when there is an increase
in nitrogenous waste products in the blood. There are two
types of kidney failure, which are acute and chronic kidney
failure [1].

Acute renal failure (ARF) is a syndrome in which glo-
merular filtration is often reversibly decreased (hours to

< Enis Rauf Coskuner
enisraufcoskuner @hotmail.com

Burak Ozkan
burakozkandoc @hotmail.com

Department of Urology, Acibadem Mehmet Ali Aydinlar
University School of Medicine, Acibadem Bakirkoy
Hospital, Halit Ziya Usakligil Cad No:1, Bakirkoy,
34140 Istanbul, Turkey

Published online: 22 March 2021

days). According to “Kidney Disease: Improving Global
Outcomes (KDIGO),” which was written in 2012, acute
kidney injury (AKI) is diagnosed when an individual has
either (a) increased creatinine 0.3 mg/dL in 48 h, (b) cre-
atinine 1.5 times baseline in the last 7 days or (c) urine
volume less than 0.5 mL/kg per hour for 6 h [2]. ‘AKT’
often replaces the term ‘ARF,” as it expresses the entire
clinical spectrum (e.g., from a slight increase in serum cre-
atinine to overt renal failure, [3]. The causes of AKI can be
prerenal, intrarenal, and postrenal. Prerenal AKI accounts
for about 60% of AKI cases, and its causes include hypo-
tension, volume constriction (e.g., bleeding, sepsis), severe
organ failure (e.g., heart and liver), and drugs (e.g., non-
steroidal anti-inflammatory drugs (NSAIDs), angiotensin
receptor blockers (ARB), angiotensin-converting enzyme
inhibitors (ACEls), and cyclosporine). Intrarenal AKI
accounts for approximately 35% of AKI cases and is
caused by acute tubular necrosis (e.g., nephrotoxic sub-
stances, radiographic contrast agent, prolonged prerenal
insufficiency), acute interstitial nephritis, connective tis-
sue disorders (e.g., vasculitis), fat embolism, intrarenal
deposition (e.g., tumor lysis syndrome, increased uric acid
production, and multiple myeloma), and rhabdomyolysis.
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Postrenal AKI is responsible for approximately 5% of AKI
cases and can be caused by extrinsic compression (e.g.,
prostatic hypertrophy, carcinoma), intrinsic obstruction
(e.g., stone, tumor, clot, stricture), and neurogenic blad-
der [1].

Chronic kidney disease (CKD) is a permanent clini-
cal syndrome with a slow and progressive nature that is
characterized by the irreversibility of the kidney’s func-
tion and/or structure. CKD is one of the most common
metabolic diseases in all societies. According to the US
Annual Data Report of the 2015 Renal Data System, the
prevalence of CKD ranges from 3.5 to 14% [2]. CKD is
diagnosed in adult patients with a glomerular filtration
rate (GFR) of less than 60 ml/min/1.73 m? for at least
three months or in those with a GFR greater than 60 ml/
min/1.73 m? with evidence of kidney damage. Signs of
kidney damage include albuminuria (i.e., more than 30 mg
of albumin in 24 h urine), hematuria/leukocyturia, histo-
logical changes in kidney biopsy, changes in kidney imag-
ing, persistent hydroelectrolytic disturbances, and previous
kidney transplants [4]. The main causes of CKD include
hypertension, diabetes, autoimmune diseases, chronic pye-
lonephritis, chronic glomerulonephritis, polycystic kidney
disease, chronic use of anti-inflammatory drugs, congeni-
tal malformations, and long-term acute kidney disease [4].

CKD, end-stage renal disease (ESRD), and kidney
transplantation affect the endocrine system, thereby caus-
ing a wide variety of syndromes and clinical disorders.
CKD has an effect on fertility by causing uremia, chronic
inflammation, and changes in reproductive hormone lev-
els in both men and women. Sexual dysfunction, such as
erectile dysfunction, decreased libido, and decreased fre-
quency of sexual intercourse are common in patients with
CKD [5]. One of the most common symptoms of sexual
dysfunction in men with CKD is erectile dysfunction (ED).
The prevalence of ED has been reported to be 70-80% in
dialysis patients [6]. A multinational cross-sectional study
of 946 men undergoing hemodialysis reported that 83% of
those men had varying degrees of erectile dysfunction [7].

In the aging population, the high incidence of diabe-
tes and hypertension has led to an increase in the number
of patients with CKD [8]. However, currently available
standard treatment options are not sufficient to prevent
the progression of CKD in many patients. Therefore,
new drugs are needed to slow the loss of kidney func-
tion. In recent studies, many agents have been utilized
for the treatment of ESRD, CKD or diabetic nephropathy
(DN). These include phosphodiesterase inhibitors (PDEI),
anti-inflammatory agents, vitamin D receptor activators,
nuclear factor erythroid 2-related factor 2 (Nrf2) activa-
tors, and endothelin receptor A blockers [9]. Among these
therapeutics, PDEI (used for the treatment of ED) have
shown promise in slowing down chronic renal failure. In
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this review, the renoprotective role of PDE 5 inhibitors
was summarized.

Phosphodiesterase 5 inhibitors

PDE are a family of enzymes that regulate cellular levels
of second messengers, such as cyclic adenosine monophos-
phate (cAMP) and cyclic guanosine monophosphate (cGMP)
[10]. To date, eleven different PDE families have been
defined [11]. Each PDE family has its own characteristics,
and each modulates different regulatory pathways in the cell.
Therefore, targeting specific PDE families may be helpful in
treating diseases [11, 12]. PDEs 5, 6, and 9 are selective for
cyclic 3-5-guanosine monophosphate (cGMP), PDEs 4, 7,
and 8 are selective for cyclic 3-5-adenosine monophosphate
(cAMP), and PDEs 1, 2, 3, 10, and 11 can hydrolyze both
cAMP and cGMP [13].

PDES is found in high concentrations in the smooth mus-
cle cells of the peripheral arteries and venous vessels, coro-
nary and pulmonary circulation, vascular smooth muscle
cells of the corpora cavernosa of the penis, as well as in
platelets [10]. PDES specifically hydrolyzes cGMP (Fig. 1)
[11]. The resulting cGMP activates cGMP-dependent pro-
tein kinase (cGK or Protein Kinase G (PKG),), which in
turn activates certain proteins that cause various cellular
effects, such as growth, vitality, endothelial permeability,
ion transport, smooth muscle relaxation, secretion, and gene
transcription. There are three isoforms of PDES. PDE5SA1

NO

Extracellular |

Soluble Guanylate
Cyclase

Intracellular

Fig.1 cGMP signaling cascade. cGMP is produced by soluble gua-
nylyl cyclases through nitric oxide activation. cGMP then activates
cGMP-dependent protein kinase G, causing various cellular effects,
such as growth, vitality, endothelial permeability, ion transport,
smooth muscle relaxation, secretion, and gene transcription. PDES
specifically catabolize cGMP. PDESI, on the other hand, increases the
cGMP activity by inhibiting this effect of PDES
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and PDESA?2 are widely expressed in the brain, lung, vas-
cular smooth muscle cells, and tubular epithelial cells of
the renal proximal tubule and medullary collecting duct,
whereas PDE5A3 is only expressed in vascular smooth
muscle cells [14].

PDES inhibitors (PDES5Is) increase intracellular cGMP by
selectively inhibiting PDES5-driven cGMP hydrolysis. cGMP
is the second messenger for both the natriuretic peptide sys-
tem as well as nitric oxide (NO). Increased cGMP causes
prolongation of the NO signal in vascular smooth muscle
cells, causing smooth muscle relaxation and vasodilation
[15]. As a result, vasodilation in the corpus cavernosum of
the penis supports erection, while vasodilation in the pul-
monary vessels decreases their pressure and decreases arte-
rial blood pressure in the systemic circulation [16]. Zapri-
nast, which was synthesized in 1974, was identified as the
first selective PDES inhibitor [17]. However, later studies
revealed that zaprinast is actually not selective for PDES
[18]. The Food and Drug Administration (FDA) and the
European Medicines Agency (EMA) introduced Sildenafil in
1998, vardenafil and tadalafil in 2003, and avanafil in 2013
as PDESI compounds [19]. The pharmacological profile of
PDESI, which is used orally at therapeutic dosage in the
treatment of ED, is shown in Table 1 [20].

Physiological role of PDES5 in the kidney

PDES is also expressed in renal vessels, glomeruli, inter-
nal medullary collecting ducts, and cortical tubules [21].
It is known that PDES inhibition regulates the excretory
function and hemodynamics of the kidney. In the renal
vascular wall, PDES contributes to the regulation of renal
vascular blood flow by limiting the vascular relaxation
caused by cGMP [22]. PDES contributes to the regulation
of natriuresis through the degradation of cGMP. Chen et al.
[16] showed that PDES5 inhibition raised cGMP and, more
importantly, natriuresis in heart failure dogs. Similarly, in
a study in pregnant rats, it was revealed that PDES activ-
ity reduced the natriuretic effect caused by the cGMP sig-
nal in the collecting duct [23]. Thus demonstrating that the
PDE is a negative regulator for cGMP-mediated natriuresis.

Table 1 Pharmacological profile of oral PDESI at therapeutic dosage
for ED [20]

Parameter Sildenafil Tadalafil 20 mg Vardenafil

100 mg 20 mg
Thax () 1.16 £0.99 2 0.66 (0.250-3.0)
T, (h) 3.82+0.84 17.5 3.94+1.31
C (max ng/m) 3274236 378 20.9+1.83
AUC (ngxh/m) 1963 +859 8066 74.5+1.82

PDES5I Phosphodiesterase type-5 inhibitor, ED Erectile dysfunction

NO-cGMP-PDES controls glomerular filtration by regu-
lating cleft membrane and cytoskeletal reorganization in
podocytes [24]. In juxtaglomerular (JG) cells, while renin
synthesis is stimulated by cAMP, it is inhibited by cGMP
[25]. PDES increases renin synthesis by degrading cGMP
in JG cells [26]. Since PDES is widely found in kidney tis-
sue and is involved in kidney physiology and clinical and
experimental studies have shown that it may play a role in
kidney damage, it shows that PDESI can play a potential
role in the management of kidney disease. However, there is
currently no PDESI approved and marketed for the treatment
of kidney disease [13].

Renoprotective effect of PDE5 inhibitors in diabetic
nephropathy

The incidence of diabetes mellitus and its most important
complication, diabetic nephropathy (DN), is increasing
worldwide [24]. DN is characterized by oxidative stress,
podocyte damage, and glomerulosclerosis [27]. In addi-
tion, there is reduced NO bioavailability in DN, which may
play an important role in disease progression. However, the
detailed pathophysiological mechanism has not been fully
elucidated. The NO-cGMP axis has been reported to be
important in maintaining glomerular filtration and renal per-
fusion [28]. In vascular endothelial cells, NO is synthesized
from L-arginine by endothelial NO synthase (eNOS). The
majority of NO’s biological actions are mediated by cGMP.
The cGMP hydrolyzing enzyme, PDES, is expressed in the
proximal tubules, collecting ducts, and glomerulus in the
kidney [29]. The NO-cGMP axis contributes to glomerular
filtration by regulating the cleft membrane and cytoskeletal
reorganization in podocytes [30]. In diabetic patients, it has
been shown that cGMP production is decreased in the glo-
meruli [31]. The causes of NO-cGMP dysfunction in DN
include the removal of NO by reactive oxygen species (ROS)
[32] and increased activity of PDES5, which is reported to be
the main cGMP hydrolyzing enzyme in rat glomeruli [33].
However, increased cGMP levels due to selective PDES
inhibition has been shown to reduce glomerulosclerosis
and proteinuria in various kidney disease models, including
animal models of both type 1 and type 2 diabetes [15, 34].

Results of some studies investigating the effects of PDES
inhibitors on DN are shown in Table 2. Most of these studies
were conducted on the PDESI sildenafil. Sildenafil has been
shown to improve albuminuria, glomerular hyperfiltration,
glomerular hypertrophy, glomerulosclerosis score, levels
of serum urea and creatinine (Cr), NO, malondialdehyde
(MDA), glutathione (GSH), glutathione peroxidase (Gpx),
superoxide dismutase (SOD), catalase (CAT), total antioxi-
dant status (TAS), monocyte chemotactic protein-1 (MCP-
1), and inflammation and monocyte/macrophage infiltration
(ED-1) levels in DN [15].
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Table 2 Renoprotective effect of PDESI in diabetic nephropathy

Author, year Study design PDES5I Diabetic nephropathy Renoprotective effects of
PDESI
Lau et al. 2007 Animal (Rabbits) Vardenafil (3 mg/kg/day) 1sCr, 1Proteinuria, |CrCl 1sCr, |Proteinuria, 1CrCl

Jeong et al. 2009

Kuno et al. 2011

Qi etal. 2011

Tripathi et al. 2015

Lee et al. 2015

El-Mahdy et al. 2016

Mehanna et al. 2018

Wang et al. 2020

Animal (Sprague-Dawley
rats)

Animal (Sprague-Dawley
rats)

Animal (Sprague-Dawley
rats)

Animal (Sprague—Dawley
rats)

Animal (Mouse Cell Culture)

Animal (White Albino rats)

Animal (Sprague—Dawley
rats)

Animal (Sprague—Dawley
rats)

Sildenafil (3 mg/kg/day)

Sildenafil (2.5 mg/kg/day)

Icariin (80 mg/kg)

Sildenafil (2.5 mg/kg/day)

Tadalafil (10 uM)

Sildenafil (3 mg/kg/day)

Sildenafil (3 mg/kg/day)

Icariin (20, 40, 80 mg/kg)

tNitrotyrosine, {MCP-1,
TED-1, 1iNOS 1Albuminu-
ria, TUrine 8-OH dG

1 Albuminuria, Glomerulo-
sclerosis +

Glomerular Hyperfiltration +

Glomerular Hypertrophy +

1Collagen Types I, 1Colla-
gen Types III

tCollagen IV, 1TGF-p1,
1sCr, 1BUN, TMDA,
1SOD,1Hydroxyproline,

Glomerular Hypertrophy +

1Total protein excretion,
tAlbuminuria

1sCr, 1BUN, |CrCl, Glo-
merular sclerosis +

1Glucose-induced Protein
Synthesis, TmTORCI,
tLaminin y1, 1Fibronectin

|AMPK Phosphorylation

1sCr 1BUN, 1Proteinuria
1Kidney IL-1

INO, |SOD, |TGF-p1

TMDA, 1sCr, 1BUN

|GSH, |CAT, |GPx, |SOD,
ITAS

1Proteinuria, 1BUN, 1sCer,
1Blood Pressure, TMDA
ttriglyceride, 1LDL-C,
|HDL-C, |CAT, | SOD,

|Nitrotyrosine, |MCP-1
|ED-1, |iNOS Albuminuria,
|Urine 8-OH dG, |

| Albuminuria, Glomeruloscle-
rosis@

Glomerular Hyperfiltration®

Glomerular Hypertrophy@

|Collagen Types I, |Collagen
Types 111

|Collagen 1V, | TGF-p1, |sCer,
|BUN,

|MDA, 1SOD, |Hydroxy-
proline,

Glomerular Hypertrophy@®

| Total protein excretion,
| Albuminuria

1sCr, |BUN, 1CrCl, Glomeru-
lar sclerosis @

|Glucose-induced Protein
Synthesis, |mTORCI,
|Laminin y1, |Fibronectin

1AMPK Phosphorylation

1sCr |BUN, |Proteinuria,
|Kidney IL-1

TNO, 1SOD, 1TGF- p1

IMDA, |sCr, |BUN

1GSH, 1CAT,1GPx, 1SOD,
1TAS

|Proteinuria, |BUN, |sCr,
|Blood Pressure, | MDA
|triglyceride, | LDL-C,
JHDL-C, 1CAT, 1SOD,

sCr serum creatinine, BUN Blood Urea Nitrogen, SOD superoxide dismutase, TGF-f transforming growth factor beta, TNF-o tumor necrosis
factor a, CrCl Creatinine Clearance, MCP-1 Monocyte chemoattractant protein-1, ED-/ inflammation and monocyte/macrophage infiltration,
MDA malondialdehyde, NO nitric oxide, GSH Glutathione, CAT catalase, GPx glutathione peroxidase, TAS total antioxidant status, TOS total
oxidant status, Urine 8-OH dG urine. 8-hydroxy-2-deoxyguanosine, LDL low-density lipoprotein, HDL high-density lipoprotein, /L-1  Interleu-
kin 1 beta, AMPK adenosine monophosphate-activated protein kinase, mTORCI mammalian target of rapamycin 1

Tadalafil, another PDESI, protects podocytes from
damage by inhibiting matrix protein synthesis caused by
high glucose levels via the NO-Hydrogen sulfide- AMP-
activated protein kinase- Mammalian target of rapa-
mycin complex 1 (NO-H2S-AMPK-mTORCI1) pathway
[35]. Treatment with Vardenafil, another PDESI, has
been shown to improve serum creatinine concentration,
proteinuria, podocyte cGMP levels, renal Transforming
growth factor beta 1 (TGF-P1) expression, and renal NOS
levels in DN [24, 34]. Further, administration of Icariin,
another PDESI, reduces intracellular superoxide anion
levels, inhibits fibronectin formation, improves SOD,
MDA, Blood Urea Nitrogen (BUN), Cr, 24 h proteinuria,
microalbuminuria levels, and expression of TGF-f1 and
collagen IV protein in DN [36, 37]. Taken together, these
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data indicate that PDESI inhibitors have a renoprotective
effect in DN.

Renoprotective effect of PDES5 inhibitors
in ischemia-reperfusion injury

Ischemia is an irreversible process of tissue injury that is
caused by loss of blood flow in the tissue due to a blood-
stream disturbance [38]. The period when there is blood flow
to the tissue after the ischemic period is termed ‘reperfu-
sion,” and it can cause severe tissue damage, which is known
as ‘ischemia reperfusion’ (I/R) [39]. I/R-induced kidney
damage is a common cause of acute kidney failure, which
occurs in several conditions such as shock, heart failure,
kidney transplantation, nephron-sparing surgery, and renal
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angioplasty [40]. Although previous studies have elucidated
the mechanisms underlying renal I/R injury, there are no
effective treatments. Mechanisms of renal I/R injury include
hypoxia, accumulation of free radicals (such as ROS),
inflammatory cell infiltration, vascular endothelial damage,
and the generation of inflammatory mediators. Studies have
shown that I/R exacerbates renal structural damage [41].
PDES inhibitors have been reported to increase antioxidant
defense, at the same time reducing inflammation and apop-
tosis [42].

Results of studies investigating the effects of PDES inhib-
itors on renal I/R damage are presented in Table 3. Among
the PDESI, most studies in renal I/R injury have been per-
formed with tadalafil. Tadalafil especially improved tubular
morphology, Intercellular Adhesion Molecule 1 (ICAM-1),
MCP-1, serum BUN, Cr, C-reactive protein, MDA, SOD,
Myeloperoxidase (MPO), levels of total oxidant status
(TOS) and TAS, expression of caspase-3, Tumor necrosis
factor alpha (TNF-a), Interleukin 1 beta (IL-1b), IL-6, apop-
totic protease activating factor 1 (APAF-1), inducible NOS
(iNOS), and eNOS and Heat shock protein 70 (HSP-70) lev-
els in I/R renal injury [43-45].

The PDESI Sildenafil has been shown to provide a reno-
protective effect against I/R damage through its anti-inflam-
matory, antioxidant, and anti-apoptotic effects. Sildenafil
treatment has been reported to ameliorate apoptotic cells,
as well as improve eNOS levels, p53 positive cells, MDA,
MPO, Thiobarbituric acid reactive substance (TBARS),
superoxide anion production (SAG), GSH levels, caspase-3
expression, creatinine clearance (CrCl), BUN, TNF-a, IL-1p
and ICAM-1 levels, and has also been reported to improve
the histopathological damage score in I/R injury [46—49].
The administration of the PDESI Vardenafil improves serum
creatinine, fractional sodium excretion (FENa), renal tissue
cGMP levels, renal scintigraphy, and histological score in
I/R injury [50]. The PDESI Udenafil has a protective effect
against damage to histopathological findings and biochemi-
cal parameters (e.g., Cr, BUN, Crcl and neutrophil gelati-
nase-associated lipocalin (NGAL) levels) in I/R [51]. Taken
together, these data indicate that PDES inhibitors have a
renoprotective effect in I/R injury.

Renoprotective effect of PDES5 inhibitors
in nephrotoxic nephropathy

Contrast-induced nephropathy (CIN) is an acute nephropa-
thy syndrome that occurs within 48 h after exposure to intra-
vascular iodinated contrast media (CM), which is typically
given for diagnostic purposes [52]. CIN is associated with an
increased risk of cardiovascular adverse events, prolonged
hospital stays, and high mortality [53]. The pathophysiol-
ogy of CIN is due to both direct cellular toxicity and locally
decreased renal blood flow. Therefore, based on the putative

pathophysiology of CIN, increasing renal blood flow via the
induction of local vasodilation should be a viable treatment
option. PDES inhibitors are thought to be effective in the
treatment of CIN, as they have previously been shown to
reduce ischemia-induced kidney damage [46]. In addition
to treating CIN, PDES5Is have also been studied as treat-
ments for renal damage caused by nephrotic agents (such as
gentamicin, cisplatin, doxorubucin).

Results of studies investigating the effects of PDES
inhibitors on nephrotoxic nephropathy are presented in
Table 4. Treatment with the PDESI sildenafil was associ-
ated with decreased histological damage, attenuation of
acute kidney injury markers, decreased electrolyte distur-
bance, decreased plasma creatinine, uremia, and proteinu-
ria, and decreased production of ROS, TAC, GSH, TBARS
in CIN [54, 55]. The administration of Sildenafil has been
reported to improve iNOS expression, serum Cr and urea
levels, urinary albumin, and renal MDA, CAT and SOD
activities in gentamicin-induced renal injury [56]. In dox-
orubicin-induced renal injury, sildenafil treatment causes a
significant decrease in serum urea, Cr, and uric acid levels,
a significant improvement in renal MDA and GSH levels,
and a decrease in the amount of renal TNF-a [57]. Further,
sildenafil administration causes a dramatic improvement in
renal histopathology, increase in renal blood flow, increase
in renal Bcl-2-associated X protein/B-cell lymphoma 2
(Bax/Bcl-2) ratio, decrease in renal caspase-3 activation
and Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) positive apoptotic cells when used as a
treatment for damage caused by cisplatin, another nephro-
toxic agent [58].

The PDESI Tadalafil abolishes the increase in urinary
NGAL excretion in patients given CM, suggesting a nephro-
protective effect against contrast agent-induced AKI [59].
In addition, Tadalafil exerts a protective effect against renal
damage in sepsis, as evidenced by both biochemical and
histopathological analyses in serum and kidney tissue. This
protective effect may be due to the fact that Tadalafil sup-
presses oxidative stress and inflammation, both of which
can cause tissue damage [60]. Likewise, pretreatment with
tadalafil has been shown to have a renoprotective effect in
the Escherichia coli-induced pyelonephritis (PN) rat model.
In that study, tadalafil completely cured PN-specific tubular
damage and cast formation, greatly reversed oxidant/antioxi-
dant system dysfunction, significantly altered the increase
in plasma inflammatory cytokine and chemokine excretion,
and attenuated the expression of the renal fibrotic biomarker
TGF-p [61].

In cyclosporine A (CyA) -induced nephropathy, admin-
istration of the PDESI Vardenafil improved expression lev-
els of previously decreased Platelet-derived growth factor
(PDGF)-A and C, TGF-p1, and cyclo-oxygenase 1 (COX-1)
and -2 by modulating cGMP activity in the kidneys [62].
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1GSH, 1Bcl-2, |p-NF-Kf, |MDA, |Bax, |Cas-

pase 3, |iNOS/TNF-o/IL-1p, |ROS

Renoprotective EFFEcts of PDESI
| Apoptotic changes

pase 3, 1iNOS/TNF-o/IL-1p, tROS

1GSH, |Bcl-2, 1p-NF-Kf, tMDA, 1Bax, 1Cas-
1 Apoptotic changes

Nephrotoxic nephropathy

PDESI/nephropathy Model

Icariin (0.25-2.0 uM)
Cisplatin-induced model

Human (Cell Culture)

Study design
cecal ligation and puncture, Pgp P glycoprotein, VGEF Vascular endothelial growth factor, NF- Kf nuclear factor kappa b, PDGF Platelet-derived growth factor, ROS reactive oxygen species,

shock protein 70, APAF-1 Apoptotic protease activating factor 1, TBARS thiobarbituric reactive species, RPF renal plasma flow, RVR renal vascular resistance, PROTC protein carbonyl, CLP
TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling, CIN contrast induced nephropathy

1 beta, AMPK adenosine monophosphate-activated protein kinase, mTORC1 mammalian target of rapamycin 1, /CG indocyanine green, SAG superoxide anion generation, Nrf2, nuclear factor
erythroid 2-related factor 2, FeNa fractional excretion of sodium, NGAL Lipocalin-2/neutrophil gelatinase associated lipocalin, iNOS inducible nitric oxide synthase, eNOS endothelial nitric
oxide synthase, MPO Myeloperoxidase, GFR glomerular filtration rate, Bcl-2 B-cell lymphoma 2, Bax Bcl-2-associated X protein, /CAM-1 Intercellular Adhesion Molecule 1, HSP-70 heat

cyte chemoattractant protein-1, ED-1 inflammation and monocyte/macrophage infiltration, MDA malondialdehyde, NO nitric oxide, GSH Glutathione, CAT catalase, GPx glutathione peroxi-
dase, TAS total antioxidant status, 7OS total oxidant status, Urine 8-OH dG urine. 8-hydroxy-2-deoxyguanosine, LDL low-density lipoprotein, HDL high-density lipoprotein, /L-1 f Interleukin

sCr serum creatinine, BUN Blood Urea Nitrogen, SOD superoxide dismutase, TGF-f transforming growth factor beta, TNF-a tumor necrosis factor a, CrCI Creatinine Clearance, MCP-1 Mono-

Table 4 (continued)
Author, year
Zhou et al. 2019

Further, 24 h pretreatment with the PDESI icariin increased
GSH level, decreased MDA and ROS levels, decreased
Nuclear Factor kappa B (NF-kB) phosphorylation and
nuclear translocation, and decreased IL-1f, TNF-a, and
iNOS secretion in the human embryonic kidney (HEK) -293
cells, which had significantly improved oxidative stress fol-
lowing treatment with the anti-cancer chemotherapy drug,
cisplatin [63]. It has been observed that when the PDESI
avanafil is administered for therapeutic purposes against
dexamethasone-induced kidney damage, there are marked
improvements in vitamin D3, bone morphogenetic protein
4 (BMP4), and BMP7 levels in kidney tissue [64]. Further,
icariin treatment has been shown to significantly increase
BUN and Cr levels, proinflammatory cytokine levels, oxida-
tive damage, apoptosis, and vascular permeability in sepsis
induced by cecal ligation and perforation (CLP) in a mouse
model. Icariin decreased the expression of NF-B, caspase-3,
and Bax, but increased the expression of Bcl-2, which is
known to be involved in inflammation and apoptosis of
the kidney [65]. It has also been shown that administration
of icariin reduces cisplatin-induced oxidative stress, local
inflammation, and tubular apoptosis, which have all been
implicated in the pathogenesis of renal dysfunction. Icariin
has been shown to have a protective effect by improving
the expression of TNF-o, NF-kB, caspase-3, and Bcl-2 pro-
teins in kidney tissue [66]. The administration of the PDESI
Udenafil significantly reduced tubular apoptosis, serum cre-
atinine, and strong eNOS staining in CsA nephrotoxicity
[67]. Taken together, these data indicate that PDESI have a
renoprotective effect in nephrotoxic nephropathy.

Renoprotective effect of PDE5 inhibitors in chronic
kidney disease

Inflammation, oxidative stress, and apoptosis are the mech-
anisms that are held responsible for the pathophysiology
and complications of CKD [68]. These pathophysiological
changes are major mediators of CKD in both humans and
animals and have been shown to cause similar effects in dif-
ferent rodent CKD models [69]. Animal models of CKD are
essential for elucidating the underlying physiological, bio-
chemical, and histopathological processes associated with
CKD, as well as for the development and testing of potential
therapeutic agents [70].

Results of studies investigating the effects of PDES5 inhib-
itors on CKD are presented in Table 5. The PDESI Sildenafil
prevents glomerular hypertension and hyperfiltration, and
decreases high serum creatinine concentration and protein
excretion in rats with subtotal nephrectomy [71]. In another
animal model of CKD, while adenine induced kidney injury,
sildenafil administration improved body weight, increased
urea and Cr levels, increased the activities of NGAL and
N-acetyl-p-D-glucosaminidase, and increased inflammatory
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Table 5 Renoprotective effect of PDESI in chronic kidney disease

Author, year Study design PDESI/CKD model

Chronic kidney disease

Renoprotective effects of
PDESI

Tapia et al. 2012 Animal (Wistar Albino rats)
5/6 nephrectomy

Alietal. 2018 Animal (Sprague—Dawley
rats) kg)

Adenine

Sildenafil (5 mg/kg/day)

Sildenafil (0.1, 0.5, 2.5 mg/

INO2/NO3, |cGMP (urine),
Tproteinuria, Tnitrotyrosine,
Tkidney hypertrophy

|CrCl in urine, |osmolal-
ity, |CAT, |SOD, |TAS,
lglutathione reductase,
Isclerostin

tadiponectin, cystatin-C,
TMDA, 1NGAL, tAlbu-
min, 1sCr, 1BUN, total
NO, TMAPK, 1Caspase 3
positive cells, 1TNF-a

Fibrosis, mononuclear infil-

TNO2/NO3, 1¢GMP (urine),
|proteinuria, |nitrotyrosine,
|kidney hypertrophy

1CrCl in urine, Tosmolal-
ity, 1CAT, 1SOD, 1TAS,
|glutathione reductase,
Tsclerostin

ladiponectin, |cystatin-C,
IMDA, |NGAL, |albumin,
1sCr, |BUN, |total NO,
IMAPK,

|Caspase 3 positive cells,
|TNF-a

tration, tubular necrosis,
tubular cast formation,
necrotic nuclei, tubular cells
apoptosis

Improved histological changes

sCr serum creatinine, BUN Blood Urea Nitrogen, SOD superoxide dismutase, MDA malondialdehyde, CAT catalase, MAPK mitogen-activated
protein kinase, NGAL Lipocalin-2/neutrophil gelatinase-associated lipocalin, TNF-a tumor necrosis factor o, TAS total antioxidant status, CrCl
Creatinine Clearance, NO, nitric oxide, cGMP cyclic guanosine monophosphate

cytokines and antioxidant damage indices [72]. In the CKD
model created with the 5/6 nephrectomy procedure, treat-
ment with the PDESI icariin revealed a protective effect
on BUN, Cr, uric acid, TGF-p1, Hepatocyte growth factor
(HGF), BMP-7, Wilms’ tumour 1 (WT-1), and Pax2 levels.
Moreover, icariin significantly increased the expression of
CD133, CD24, odd-skipped related transcription factor 1
(Osrl), and Nanog, and increased the number of CD133%/
CD24* renal stem/progenitor cells in kidney tissue [73]. In
the kidneys of mice undergoing unilateral ureteral obstruc-
tion (UUO), there were significantly increased levels of
profibrotic factors (TGF and connective tissue growth factor)
and fibrotic markers (a-smooth muscle actin and fibronec-
tin), pathological changes, and collagen deposition, all of
which were significantly reversed with icariin treatment.
Icariin treatment also significantly reduced the protein
expression of proinflammatory factors and increased the
protein expression of antioxidative enzymes (e.g., SOD and
CAT) in the kidneys of UUO mice. Icariin treatment pro-
tects against renal fibrosis associated with CKD, thanks to
its antifibrotic and anti-inflammatory properties [74]. Taken
together, these data indicate that PDESIs have a strong reno-
protective effect against CKD.

Side-effects of PDE5I and future perspective

Most of the side effects associated with PDES inhibitors
occur due to cross-reactivity with other PDE isoenzymes.
These effects are usually dose dependent. Some of the com-
mon side effects encountered with the administration of
PDESIs are: mild headache, flushing, dyspepsia, back pain

and myalgias, hypotension and dizziness, rhinitis, and mild
and temporary loss of vision. However, side effects that are
less common and can be considered more serious than other
side effects; non-arteritic anterior ischemic optic neuropathy,
hearing loss, priapism and melanoma [75].

Although isolated cardiovascular events and sudden
deaths were reported in early studies with PDES5i, later stud-
ies have shown that this drug class does not have a greater
risk than placebo [76]. However, it should be used with cau-
tion in cardiovascular diseases. Since the harmful effects of
PDESIs arise as a result of their use with nitrate or nitro-
glycerin, their use of cardiovascular drugs, especially nitrate
ester drugs, is contraindicated [77]. In addition, Vardenafil
causes the lenghtening of QT and is therefore known to be
contraindicated in inpatients with type 1A, type 3 antiar-
rhythmics and congenital prolonged QT syndrome [75]. In
addition, caution should be exercised in patients who need
to be taken with alpha blockers, with a history of myocardial
infarction in the last six months, stroke or life-threatening
arrhythmia, resting hypotension or hypertension, history of
heart failure or unstable angina [75].

While investigating the ability of PDESIs to treat hyper-
tension and angina, they were found to inadvertently cause
an erection of the penis. PDESI has been used to treat ED
ever since. In addition, they are also used in the treat-
ment of idiopathic pulmonary hypertension and prema-
ture ejaculation [75]. In addition to these diseases used in
the clinic, positive results of preclinical studies have been
published in many areas such as cardiovascular diseases,
cancer, diabetes and urological problems. As reviewed
above, promising results have been obtained in preclinical

@ Springer
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Fig.2 Reno-protective effects
of PDESIs

Reduces fibrosis (Anti-fibrotic effect)

Improves NOS levels

Decreases DNA damage

Decreases ischemia-reperfusion injury

Decreases oxidative stress (Anti-oxidants effect)

Reduces apoptosis (Anti-apoptotic effect)

Reno-protective effects of
Phosphodiesterase 5
inhibitors

Reduces necrosis

Improves renal blood flow

Improves histological changes

Reduces inflammation (Anti-inflammatory effect)

studies with PDESIs in renal diseases. However, since the
results are obtained from animal studies, they need to
be confirmed by clinical studies. Although many clini-
cal studies focusing on potential cardiovascular benefits
with PDESIs (Clinical Trials.gov) have been described,
there are not enough clinical studies on kidney diseases
[78]. The number of clinical studies should be increased
as soon as possible for PDESIs to be used in the treatment
of kidney diseases since the results of precilinic studies are
positive and their possible side effects are low.

Conclusions

PDES5Is appear to be beneficial in renal diseases. They
improve renal function and histopathological changes
through a variety of mechanisms, including antioxida-
tive, anti-inflammatory, anti-apoptotic, antifibrotic, and
regional hemodynamic effects (Fig. 2). Regardless of
the type of renal damage and the agent administered,
the reno-protective effect of PDESIs was observed in the
vast majority of studies. The results of animal studies are
promising, although the data are still limited. The potential
reno-protective capacity of PDES5Is should be supported
by further animal and clinical studies.
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